Microstructure Evolution and Microstructural Characteristics of Al–Mg–Si Aluminum Alloys Fabricated by a Modified Strain-Induced Melting Activation Process
نویسندگان
چکیده
A modified strain-induced melting activation (SIMA) process is shown to improve high-temperature formability. The microstructural characteristics of the spheroidized grains of SIMA-processed alloys affect high-temperature formability. The effects of hot extrusion parameters and chemical composition on the evolution of spheroidized grains were investigated using several 6xxx series aluminum alloys subjected to a modified SIMA process. The results show that 6066 aluminum alloy is the most suitable alloy for the SIMA process, as it contains sufficient Mg, Si, Cu, and Mn. Adequate amounts of Mg, Si, and Cu lead to a high liquid fraction, and a sufficient addition of Mn inhibits grain growth. Proper hot extrusion parameters are essential, because initial fine and uniform recrystallized grains lead to fine and uniform globules. The phases at the global grain boundaries of 6066 aluminum alloy are eutectic phases of Al and Si, Al and Mg2Si, and Al and Al2Cu, as analyzed using transmission electron microscopy.
منابع مشابه
Microstructure Evolution and High-Temperature Compressibility of Modified Two-Step Strain-Induced Melt Activation-Processed Al-Mg-Si Aluminum Alloy
A two-step strain-induced melt activation (TS-SIMA) process that omits the cold working step of the traditional strain-induced melt activation (SIMA) process is proposed for 6066 Al-Mg-Si alloy to obtain fine, globular, and uniform grains with a short-duration salt bath. The results show that increasing the salt bath temperature and duration leads to a high liquid phase fraction and a high degr...
متن کاملINVESTIGATION OF MICROSTRUCTURAL AND MECHANICAL PROPERTIES OF 7075 AL ALLOYPREPARED BY SIMA METHOD
The microstructure and mechanical properties of 7075 wrought aluminum alloy produced by strain induced melt activation (SIMA) route were investigated.Also liquid volume fraction measurement was studied by three procedures. Remelting process was carried out in the range of 560 to 610 °C for 20 min holding. The microstructure in the semi-solid state consists of fine spherical solid grains surroun...
متن کاملEFFECT OF THE INCLINED COOLING PLATE CHARACTERISTICS ON THE THIXOTROPIC MICROSTRUCTURE OF A356.0 ALUMINUM ALLOY
In the present work microstructural evolution of A356 Aluminum alloy using an inclined cooling plate casting process for thixoforming feedstock production is investigated. The resultant microstructure was evaluated and compared with those of the same alloy produced by the conventional casting process, i.e. directly cast in the same mold without using an inclined cooling plate. It was found that...
متن کاملEffects of Various Ageing Heat Treatments on Microstructural Features and Hardness of Piston Aluminum Alloy
Piston aluminum alloys have different intermetallic phases, such as Cu3Al, Mg2Si ,and AlNi phases. The morphology and the distribution of such phases have important roles on mechanical properties of the piston material. Therefore, in this research, various ageing heat treatments on the mentioned material were done and the microstructural feature and the hardness were studi...
متن کاملEFFECTS OF A MODIFIED SIMA PROCESS ON THE STRUCTURE, HARDNESS AND MECHANICAL PROPERTIES OF Al-12Zn-3Mg-2.5Cu ALLOY
A modified strain-induced melt activation (SIMA) process was applied and its effect on the structural characteristics and hardness of the aluminum alloy Al–12Zn–3Mg–2.5Cu was investigated. Specimens subjected to a deformation of 40% at 300 °C were heat treated at various times (10-40 min) and temperatures (550-600 °C). Microstructural studies were carried out using opt...
متن کامل